ACT[®] Coach

Mathematics

Table of Contents

ACT® Lesso	on Correlation Chart
Chapter 1	Number Sense
Lesson 1	Compare Real Numbers
Lesson 2	Exponents
Lesson 3	Compute with Real Numbers
Lesson 4	Ratios, Proportions, and Percents 26
Lesson 5	Direct and Inverse Variation
Lesson 6	Solve Problems with Matrices
Lesson 7	Logarithms
Lesson 8	Complex Numbers51
Lesson 9	Use Number Theory to Solve Problems 57
Lesson 10	Math in the Real World 62
Chapter 1 R	<i>Review</i>
Chapter 2	Measurement
Lesson 11	Convert Rates and Measurements 74
Lesson 12	Interior and Exterior Angles of a Polygon 79
Lesson 13	Perimeter and Area of Polygons 84
Lesson 14	Parts of a Circle 90
Lesson 15	Arcs and Sectors 96
Lesson 16	Surface Area and Volume 102
Lesson 17	Changes in Parameters of Figures 108
Lesson 18	Similar Figures
Chapter 2 R	<i>Review</i>

Chapter 3	Algebra
Lesson 19	Linear Equations 126
Lesson 20	Graphs of Linear Equations
Lesson 21	Solve Linear Equations
Lesson 22	Linear Inequalities
Lesson 23	Absolute Value Functions
Lesson 24	Solve Quadratic Equations 162
Lesson 25	Graphing Quadratic Functions 167
Lesson 26	Polynomial Functions
Lesson 27	Exponential and Logarithmic Functions 181
Lesson 28	Rational Functions
Lesson 29	Solve Systems of Equations Algebraically 197
Lesson 30	Solve Systems of Equations Graphically 204
Lesson 31	Solve Systems of Inequalities 211
Lesson 32	Arithmetic Sequences and Series 219
Lesson 33	Geometric Sequences and Series 225
Lesson 34	Model Real-World Situations 232
Chapter 3 F	<i>Review</i>
Ob 1 4	0.47
Chapter 4	Geometry
Lesson 35	Coordinate Geometry
Lesson 36	Conic Sections
Lesson 37	Transformations
Lesson 38	Lines and Planes
Lesson 39	Triangles
Lesson 40	Quadrilaterals
Lesson 41	Two-Dimensional Representations of Three-Dimensional Objects 287
Lesson 42	Congruent Triangles
Lesson 43	Right Triangle Trigonometry 303
Lesson 44	Trigonometry in Non-Right Triangles 310
Lesson 45	Graphs of Trigonometric Functions 315
Chapter 4 R	Review

Chapter 5	Data Analysis, Statistics, and Probability	327		
Lesson 46	Representations of Data	328		
Lesson 47	Venn Diagrams	336		
Lesson 48	Measures of Center and Variation	341		
Lesson 49	Probability	349		
Lesson 50	Geometric Probability	355		
Lesson 51	Combinations and Permutations	359		
Chapter 5 Re	eview	367		
Glossary		370		
Practice Test 1				
Practice Test 2				

ACT® Lesson Correlation Chart

ACT® Coach, Mathematics Lesson Correlation Chart according to ACT®'s College Readiness Mathematics Standards, as found here: http://www.act.org/standard/planact/math/index.html

Standard Category	Coach Lessons		
Basic Operations and Applications	3, 4, 10, 11		
Probability, Statistics, and Data Analysis	46, 47, 48, 49, 50, 51		
Numbers: Concepts and Properties	1, 2, 7, 8, 9, 27, 28, 33		
Expressions, Equations, and Inequalities	5, 6, 10, 21, 22, 23, 24, 26, 28, 29, 32, 34		
Graphical Representations	19, 20, 25, 30, 31, 35, 36, 37		
Properties of Plane Figures	12, 14, 15, 18, 38, 39, 40, 41, 42		
Measurement	13, 14, 16, 17, 18, 50		
Functions	23, 26, 43, 44, 45		

ACT® Coach, Mathematics Lesson Correlation Chart according to Content Covered by the ACT Mathematics Test, as found here: http://www.actstudent.org/testprep/descriptions/mathcontent.html

Content Category	Coach Lessons		
Pre-Algebra	1, 2, 3, 4, 11, 21, 46, 47, 48, 49		
Elementary Algebra	2, 9, 10, 21, 24, 34, 51		
Intermediate Algebra	5, 6, 7, 8, 10, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34		
Coordinate Geometry	19, 20, 25, 30, 31, 35, 36, 37		
Plane Geometry	12, 13, 14, 15, 16, 17, 18, 38, 39, 40, 41, 42, 50		
Trigonometry	43, 44, 45		
Measurement	13, 14, 16, 17, 18, 50		
Functions	23, 26, 43, 44, 45		

Chapter 1

Variation

Number Sense

Lesson 1	Compare Real Numbers	Lesson 6	Solve Problems with Matrices
Lesson 2	Exponents	_	
Lesson 3	Compute with Real Numbers	Lesson 7	Logarithms
		Lesson 8	Complex Numbers
Lesson 4	Ratios, Proportions, and Percents	Lesson 9	Use Number Theory to Solve Problems
Lesson 5	Direct and Inverse	Lesson 10	Math in the Real World

Compare Real Numbers

The set of **real numbers** consists of the set of **rational numbers** and the set of **irrational numbers**. A rational number is a number that can be written in the form $\frac{a}{b}$, where a and b are **integers** and $b \neq 0$.

Rational numbers are numbers that can be written as a **ratio** or fraction. All fractions and integers are rational numbers, and so are all terminating or repeating decimals.

Examples of rational numbers:

$$-4 = \frac{-4}{1}$$

$$2.59 = \frac{259}{100}$$

$$0.222... = \frac{2}{9}$$

The **absolute value** of a number is its distance from zero on a number line. When you take the absolute value of a number, the result will always be positive, whether the number inside the absolute value symbols is positive or negative.

For example, |5| = 5 and |-5| = 5 because both 5 and -5 are five units away from zero on a number line.

Example 1

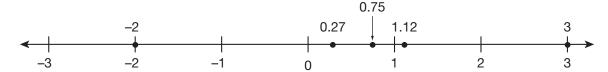
Order the following numbers from least to greatest: 27%, |-3|, $-\sqrt{4}$, $\frac{3}{4}$, 1.12.

Strategy Find the decimal equivalent of each number. Then compare the decimals.

Step 1

Write each number as a decimal.

$$27\% = 0.27$$


$$|-3| = 3$$

$$-\sqrt{4} = -2$$

$$\frac{3}{4} = 0.75$$

$$1.12 = 1.12$$

Step 2 Draw a number line, and graph each number on the number line.

Step 3

List the decimals according to their location on the number line.

$$-2, 0.27, 0.75, 1.12, 3$$

Step 4

Replace the decimals in your list with their original forms.

$$-\sqrt{4}$$
, 27%, $\frac{3}{4}$, 1.12, $|-3|$

Solution

From least to greatest, the numbers are $-\sqrt{4}$, 27%, $\frac{3}{4}$, 1.12, |-3|.

An irrational number is a decimal in which there is no end to the digits (nonterminating) and the digits do not repeat in a predictable pattern (nonrepeating). Irrational numbers cannot be represented as a ratio of two integers.

Examples of irrational numbers:

$$\pi = 3.1459265...$$
 $\sqrt{7} = 2$

$$\sqrt{7} = 2.64575131...$$

1.23456789101112...

Note that even though there is a pattern to the last number, it is not a repeating pattern. So this number cannot be written as a fraction and is therefore irrational.

Example 2

Are the numbers below rational or irrational? Locate each on a number line.

$$2\pi, \frac{7}{4}, \sqrt{10}$$

Strategy

Use the definitions of rational and irrational numbers. Then find decimal equivalents or approximations to locate the numbers on a number line.

Step 1

Determine if the numbers are rational or irrational.

We know that π is an irrational number. An irrational number multiplied by a rational number (other than 0) produces an irrational number. The product will still be nonterminating and nonrepeating. So, 2π is irrational.

All fractions are rational, so $\frac{7}{4}$ is a rational number.

The square root of a number that is not a perfect square is an irrational number.

Since 10 is not a perfect square, $\sqrt{10}$ is irrational.

Step 2

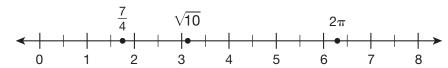
Find decimal equivalents for rational numbers and decimal approximations for irrational numbers.

A common decimal used for π is 3.14. To find the value of 2π , multiply.

$$2\pi\approx 2\cdot 3.14=6.28$$

To find the decimal equivalent of a fraction, divide.

$$\frac{7}{4} = 7 \div 4 = 1.75$$


Using your calculator, find $\sqrt{10}$ and round to two decimal places.

$$\sqrt{10} \approx 3.16$$

Step 3

Draw a number line, and graph each number on the number line.

Use the decimal approximations from Step 2 to graph each number.

Solution

 2π and $\sqrt{10}$ are irrational, and $\frac{7}{4}$ is rational. The numbers are shown on a number line in Step 3.

Duplicating any part of this book is prohibited by law.

Coached Example

Find an approximation of $\sqrt{40}$ to one decimal place without using a calculator.

First find the two whole numbers that $\sqrt{40}$ falls between.

The first 8 perfect squares are 1, 4, ____, ____, ____, and ____.

Which two perfect squares does 40 fall between? ____ and ____

Since $\sqrt{36} =$ and $\sqrt{49} =$, $\sqrt{40}$ is between ___ and ___.

Which of the two perfect squares is closer to 40? _____

So, you'll want to try numbers between 6 and 6.5.

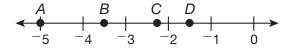
Try 6.1:
$$6.1^2 =$$

Try 6.2:
$$6.2^2 =$$

Try 6.3:
$$6.3^2 =$$

Try 6.4:
$$6.4^2 =$$

The closest approximation is (_____)².


So,
$$\sqrt{40}$$
 ≈ ____.

Lesson Practice

Choose the correct answer.

- 1. Which is an irrational number?
 - **A.** $\sqrt{81}$
 - **B.** −0.454545...
 - **C.** 10π
 - **D.** 3.14
- **2.** Which is correctly ordered from least to greatest?
 - **A.** $-\frac{11}{5}$, $-\pi$, -2.98, $-\sqrt{7}$
 - **B.** $3\frac{1}{4}$, $\sqrt{16}$, $\frac{8}{3}$, 2π
 - C. $-\frac{\pi}{4}$, $-1\frac{1}{2}$, $-\sqrt{5}$, 0
 - **D.** $-\sqrt{10}$, $-\frac{\pi}{2}$, $\frac{3}{4}$, 0.81
- 3. What is the smallest integer greater than $\sqrt{110}$?
 - **A.** 7
 - **B.** 9
 - **C.** 10
 - **D.** 11
- **4.** Which number below is the least?
 - **A.** $-\sqrt{2}$
 - **B.** $-\frac{1}{4}$
 - **C.** |0.04|
 - **D.** 0

Use the number line below for questions 5 and 6.

- **5.** Which point best represents $-\sqrt{5}$?
 - **A.** point A
 - **B.** point B
 - **C.** point *C*
 - \mathbf{D} point D
- **6.** Which of the following best describes the location of $-\frac{\pi}{2}$ on the number line?
 - **A.** point A
 - **B.** point B
 - **C.** point *C*
 - \mathbf{D} . point D
- 7. Which shows the numbers ordered from least to greatest?
 - **A.** $\frac{\pi}{3}, \frac{8}{9}, \sqrt{5}, 1.75$
 - **B.** $\frac{8}{9}, \frac{\pi}{3}, 1.75, \sqrt{5}$
 - C. $\sqrt{5}, \frac{\pi}{3}, \frac{8}{9}, 1.75$
 - **D.** $\frac{\pi}{3}$, $\frac{8}{9}$, 1.75, $\sqrt{5}$
- **8.** What is the largest integer less than 6π ?